SDGym
GitHubSlackDataCebo
  • Welcome to SDGym!
  • Installation
  • Benchmarking
    • Running a Benchmark
    • Interpreting Results
  • Customization
    • Synthesizers
      • SDV Synthesizers
      • Basic Synthesizers
      • 3rd Party Synthesizers
      • Custom Synthesizers
    • Datasets
      • Public SDV Datasets
      • Custom Datasets
    • AWS Integration
  • Resources
    • Metadata
Powered by GitBook

© Copyright 2023, DataCebo, Inc.

On this page
  • Authentication
  • Usage
  1. Customization

AWS Integration

Last updated 11 months ago

SDGym offers a native, AWS integration for compute and storage.

Authentication

Authenticate into your Amazon account first using .

import os
import sdgym

# use environment variables to authenticate into your AWS account
os.environ['AWS_ACCESS_KEY_ID'] = 'XXX'
os.environ['AWS_SECRET_ACCESS_KEY'] = 'XXX'
os.environ['AWS_SESSION_TOKEN'] = 'XXX' # optional

Usage

Once authenticated, you can supply parameters to SDGym for:

  • compute: run your script on EC2 instances instead of your local machine,

  • storage: read from datasets stored in S3 and write results back into S3

import sdgym

sdgym.benchmark_single_table(
    additional_datasets_folder='s3://my-demo-bucket', # read datasets from S3
    run_on_ec2=True, # use EC2 for compute
    output_filepath='s3://my-demo-bucket/results.csv', # store results in S3
    detailed_results_folder='s3://my-demo-bucket/details/' # store details in S3
)

For more information, see the docs for .

environment variables
Running a Benchmark