Evaluation

As a final step to your synthetic data project, you can evaluate and visualize the synthetic data against the real data. Using the SDV, you can diagnose any problems in the synthetic data, evaluate the data quality and visualize the data. Click the sections below to learn more.

from sdv.evaluation.multi_table import run_diagnostic, evaluate_quality
from sdv.evaluation.multi_table import get_column_plot

# 1. perform basic validity checks
diagnostic = run_diagnostic(real_data, synthetic_data, metadata)

# 2. measure the statistical similarity
quality_report = evaluate_quality(real_data, synthetic_data, metadata)

# 3. plot the data
fig = get_column_plot(
    real_data=real_data,
    synthetic_data=synthetic_data,
    metadata=metadata,
    table_name='guests',
    column_name='amenities_fee'
)
    
fig.show()

Need more evaluation options?

Last updated

#190: add_column() to both SingleTableMetadata and MultiTableMetadata

Change request updated