LogoLogo
GitHubSlackDataCebo
  • SDMetrics
  • Getting Started
    • Installation
    • Quickstart
    • Metadata
      • Single Table Metadata
      • Multi Table Metadata
      • Sequential Metadata
  • Reports
    • Quality Report
      • What's included?
      • Single Table API
      • Multi Table API
    • Diagnostic Report
      • What's included?
      • Single Table API
      • Multi Table API
    • Other Reports
    • Visualization Utilities
  • Metrics
    • Diagnostic Metrics
      • BoundaryAdherence
      • CardinalityBoundaryAdherence
      • CategoryAdherence
      • KeyUniqueness
      • ReferentialIntegrity
      • TableStructure
    • Quality Metrics
      • CardinalityShapeSimilarity
      • CategoryCoverage
      • ContingencySimilarity
      • CorrelationSimilarity
      • KSComplement
      • MissingValueSimilarity
      • RangeCoverage
      • SequenceLengthSimilarity
      • StatisticMSAS
      • StatisticSimilarity
      • TVComplement
    • Privacy Metrics
      • DCRBaselineProtection
      • DCROverfittingProtection
      • DisclosureProtection
      • DisclosureProtectionEstimate
      • CategoricalCAP
    • ML Augmentation Metrics
      • BinaryClassifierPrecisionEfficacy
      • BinaryClassifierRecallEfficacy
    • Metrics in Beta
      • CSTest
      • Data Likelihood
        • BNLikelihood
        • BNLogLikelihood
        • GMLikelihood
      • Detection: Sequential
      • Detection: Single Table
      • InterRowMSAS
      • ML Efficacy: Sequential
      • ML Efficacy: Single Table
        • Binary Classification
        • Multiclass Classification
        • Regression
      • NewRowSynthesis
      • * OutlierCoverage
      • Privacy Against Inference
      • * SmoothnessSimilarity
  • Resources
    • Citation
    • Contributions
      • Defining your metric
      • Development
      • Release FAQs
    • Enterprise
      • Domain Specific Reports
    • Blog
Powered by GitBook
On this page
  1. Metrics
  2. Metrics in Beta

ML Efficacy: Single Table

PreviousML Efficacy: SequentialNextBinary Classification

Last updated 2 years ago

ML Efficacy describes a set of metrics that calculate the success of using synthetic data to perform an ML prediction task.

The metrics are different based on the algorithm they use for the calculation and the type of data that the machine learning model is predicting.

Task
ML Efficacy Metrics

BinaryAdaBoostClassifier, BinaryDecisionTreeClassifier, BinaryLogisticRegression, BinaryMLPClassifier

MulticlassDecisionTreeClassifier, MulticlassMLPClassifier

LinearRegression, MLPRegressor

Binary Classification
Multiclass Classification
Regression