OrderedLabelEncoder
Compatibility: categorical data (ordinal)
The OrderedLabelEncoder transforms data that represents ordered categorical values into integers 0, 1, 2, etc. corresponding to each category in the correct order.

from rdt.transformers.categorical import OrderedLabelEncoder
ole = OrderedLabelEncoder(order=['strongly_disagree', 'disagree', 'neutral',
'agree', 'strongly_agree'])Parameters
(required) order: Apply a specific order to the values before assigning the labels
[list <value>]
An ordered list of the categories that appear in the real data. The first category in the list will be assigned a label of 0, the second will be assigned 1, etc. All possible categories must be defined in this list.
add_noise: Add noise to the label values
(default) False
Do not not add noise. Each time a category appears, it will always be transformed to the same label value.
True
Add noise. A category will be transformed to the same label with some noise added. For example instead of the label 1, values might be noised to 1.001, 1.456, 1.999, etc.
Examples
from transformers.categorical import OrderedLabelEncoder
# order the categories before assigning label values
# and then add noise to the labels
ole = OrderedLabelEncoder(order=['strongly_disagree', 'disagree', 'neutral',
'agree', 'strongly_agree'],
add_noise=True)FAQs
Last updated
