LogoLogo
GitHubSlackDataCebo
  • RDT: Reversible Data Transforms
  • Getting Started
    • Installation
    • Quickstart
  • Usage
    • Basic Concepts
    • HyperTransformer
      • Preparation
      • Configuration
      • Transformation
  • Transformers Glossary
    • Numerical
      • ClusterBasedNormalizer
      • FloatFormatter
      • GaussianNormalizer
      • LogScaler
      • LogitScaler
      • * OutlierEncoder
      • ❖ DPECDFNormalizer
      • ❖ DPLaplaceNoiser
      • ❖ ECDFNormalizer
      • ❖ XGaussianNormalizer
    • Categorical
      • LabelEncoder
      • OrderedLabelEncoder
      • FrequencyEncoder
      • OneHotEncoder
      • OrderedUniformEncoder
      • UniformEncoder
      • BinaryEncoder
      • ❖ DPDiscreteECDFNormalizer
      • ❖ DPResponseRandomizer
      • ❖ DPWeightedResponseRandomizer
    • Datetime
      • OptimizedTimestampEncoder
      • UnixTimestampEncoder
      • ❖ DPTimestampLaplaceNoiser
    • ID
      • AnonymizedFaker
      • IndexGenerator
      • RegexGenerator
      • Treat IDs as categorical labels
    • Generic PII Anonymization
      • AnonymizedFaker
      • PseudoAnonymizedFaker
    • * Deep Data Understanding
      • * Address
        • * RandomLocationGenerator
        • * RegionalAnonymizer
      • * Email
        • * DomainBasedAnonymizer
        • * DomainBasedMapper
        • * DomainExtractor
      • * GPS Coordinates
        • * RandomLocationGenerator
        • * GPSNoiser
        • * MetroAreaAnonymizer
      • * Phone Number
        • * AnonymizedGeoExtractor
        • * NewNumberMapper
        • * GeoExtractor
  • Resources
    • Use Cases
      • Contextual Anonymization
      • Differential Privacy
      • Statistical Preprocessing
    • For Businesses
    • For Developers
Powered by GitBook
On this page
  • Requirements
  • Download Instructions
  • Verification
  • Troubleshooting
  1. Getting Started

Installation

PreviousRDT: Reversible Data TransformsNextQuickstart

Last updated 2 months ago

If you'd like to use RDT for synthetic data, we recommend installing the . It will automatically download RDT, along with other libraries to support synthetic data generation and evaluation.

Requirements

  • The RDT has been developed and tested on Python

  • We recommend using a virtual environment (such as ) to avoid conflicts with other software on your device

Download Instructions

We recommend downloading rdt using .

pip install rdt

This automatically downloads the most recent version from .

You can also download rdt using .

conda install -c conda-forge rdt

This automatically downloads the most recent version from .

Verification

To verify that you have installed the RDT correctly, check your version using the following code:

import rdt
print(rdt.__version__)

The printed version number should be the latest one found in our .

Troubleshooting

If you are having issues installing RDT, please . You can browse existing issues and raise a new one if you cannot find a solution.

You can also ask questions by joining the .

SDV library
3.8-3.13
virtualenv
pip
PyPi
conda
conda
Release Notes
visit our GitHub
SDV Slack