LabelEncoder
Compatibility: categorical data (nominal and ordinal)
The LabelEncoder transforms data that represents categorical values into integers 0, 1, 2, etc. corresponding to each category.

from rdt.transformers.categorical import LabelEncoder
le = LabelEncoder()Parameters
order_by: Apply a prescribed ordering scheme to the values before assigning the labels
(default) None
Do not apply a particular order. The first unique value will be assigned label 0, the second unique value will be assigned label 1, etc.
'numerical_value'
If the data is represented by integers or floats, order by those values before assigning the labels. That is: label 0 will be assigned to the smallest value, label 1 will be assigned to the second smallest, etc.
'alphabetical'
If the data is represented by strings, order them alphabetically before assigning the labels. That is: label 0 will be assigned to the first alphabetical string, label 1 to the second, etc. Note: Digits will also be alphabetized in order from '0' to '9'.
add_noise: Add noise to the label values
(default) False
Do not not add noise. Each time a category appears, it will always be transformed to the same label value.
True
Add noise. A category will be transformed to the same label with some noise added. For example instead of the label 1, values might be noised to 1.001, 1.456, 1.999, etc.
Examples
from transformers.categorical import LabelEncoder
# order the values alphabetically before assigning the labels
# and then add noise to the labels
le = LabelEncoder(order_by='alphabetical', add_noise=True)FAQs
Last updated
