LogoLogo
GitHubSlackDataCebo
  • RDT: Reversible Data Transforms
  • Getting Started
    • Installation
    • Quickstart
  • Usage
    • Basic Concepts
    • HyperTransformer
      • Preparation
      • Configuration
      • Transformation
  • Transformers Glossary
    • Numerical
      • ClusterBasedNormalizer
      • FloatFormatter
      • GaussianNormalizer
      • LogScaler
      • LogitScaler
      • * OutlierEncoder
      • ❖ DPECDFNormalizer
      • ❖ DPLaplaceNoiser
      • ❖ ECDFNormalizer
      • ❖ XGaussianNormalizer
    • Categorical
      • LabelEncoder
      • OrderedLabelEncoder
      • FrequencyEncoder
      • OneHotEncoder
      • OrderedUniformEncoder
      • UniformEncoder
      • BinaryEncoder
      • ❖ DPDiscreteECDFNormalizer
      • ❖ DPResponseRandomizer
      • ❖ DPWeightedResponseRandomizer
    • Datetime
      • OptimizedTimestampEncoder
      • UnixTimestampEncoder
      • ❖ DPTimestampLaplaceNoiser
    • ID
      • AnonymizedFaker
      • IndexGenerator
      • RegexGenerator
      • Treat IDs as categorical labels
    • Generic PII Anonymization
      • AnonymizedFaker
      • PseudoAnonymizedFaker
    • * Deep Data Understanding
      • * Address
        • * RandomLocationGenerator
        • * RegionalAnonymizer
      • * Email
        • * DomainBasedAnonymizer
        • * DomainBasedMapper
        • * DomainExtractor
      • * GPS Coordinates
        • * RandomLocationGenerator
        • * GPSNoiser
        • * MetroAreaAnonymizer
      • * Phone Number
        • * AnonymizedGeoExtractor
        • * NewNumberMapper
        • * GeoExtractor
  • Resources
    • Use Cases
      • Contextual Anonymization
      • Differential Privacy
      • Statistical Preprocessing
    • For Businesses
    • For Developers
Powered by GitBook
On this page
  • Parameters
  • Examples
  • FAQs
  1. Transformers Glossary
  2. ID

AnonymizedFaker

PreviousIDNextIndexGenerator

Last updated 15 days ago

Compatibility: id and pii data

The AnonymizedFaker creates anonymized text belonging to specific contexts or rulesets. When transforming the data, it simply removes the column. When reversing the transform, it anonymizes the column by creating completely new, fake data at random using the .

from rdt.transformers.pii import AnonymizedFaker

transformer = AnonymizedFaker()

You can specify the exact faker method to use for more realistic data.

Parameters

provider_name: The name of the provider to use from the Faker library.

(default) None

<string>

function_name: The name of the function to use within the Faker provider.

(default) 'lexify'

<string>

Together, the provider_name and function_name parameters specify exactly how to create fake data. Some common values are:

function_kwargs: Optional parameters to pass into the function that you're specifying to create Fake data.

(default) None

Do not specify any additional parameters

<dictionary>

locales: An optional list of locales to use when generating the Fake data.

(default) None

Use the default locale, which is usually set to the country you are in.

<list>

Setting a locale might leak information about the original data. Anyone with access to the anonymized data will be able to tell which countries and locales are included in the original data .

cardinality_rule: How many unique values to create in the fake data

None

Do not impose any rules. Any number of unique PII can be generated.

'unique'

The generated data should not contain any repeating values.

Note: This option may limit the amount of data that can be created from Faker

'match'

Learn the number of unique values from the fit data and ensure that the generated data contains the same number. These may be repeated.

'scale'

Learn the number of unique values from the fit data and scale it proportionally when generating data. For example, if there are 25 unique values for every 100 rows of data, the transformer will create 50 unique values when generating 200 rows.

(deprecated) enforce_uniqueness: Use cardinality_rule instead.

missing_value_generation: Add this argument to determine how to recreate missing values during the reverse transform phase

(default) 'random'

Randomly assign missing values in roughly the same proportion as the original data.

None

Do not recreate missing values.

Examples

from transformers.pii import AnonymizedFaker

# create more realistic-looking data by specifying a provider and function
transformer = AnonymizedFaker(
    provider_name="person",
    function_name="name",
    cardinality_true='match'
)

FAQs

When should I use this transformer?

Use the AnonymizedFaker whenever you have sensitive data that should not be part of your data science project. By default, the transformer reverses the transform into fake, 4-character strings such as "UaNJ" in place of the original, sensitive data.

You can also use this transformer for ID columns with rules that cannot easily be described via Regex. For example, IDs with 4-character strings in random order, such as "UaNJ". Tip: Use the cardinality_rule parameter for primary keys.

Will any of the real values show up in the fake data?

The AnonymizedFaker generates fake data randomly without looking at the real values. So there is a small chance that a real value may show up in the real data by complete coincidence. For example, if your real data had a phone number "(617)123-4567", there's a small probability that the exact same phone number will be created by random chance.

This behavior actually protects your sensitive data! Otherwise, anyone with access to the fake data would be able to deduce the real values by noting down what's missing.

What is the difference between the AnonymizedFaker and the PseudoAnonymizedFaker?

Pseudo-anonymization indicates that the anonymization scheme can be reversed while anonymization indicates that it's permanent.

This transformer anonymizes data in an irreversible way by creating fake data in a completely random fashion. It will not be possible to guess the real values based on the fake values. This behavior allows you to protect the sensitive values in your data.

Use the from Faker, which capable of creating random text.

Use the provider for a specific context, for example or .

Use the to create random 4-character text.

Use the function from the specified provider to generate fake data. For example, from the address provider or from the bank provider.

A : provider_name="address", function_name="address"

A : provider_name="bank", function_name="bban"

A : provider_name="credit_card", function_name="credit_card_number"

: provider_name="geo", function_name="local_latlng"

A : provider_name="phone_number", function_name="phone_number"

To browse for more options, visit the .

Additional parameters to add. These are unique to the function name and should be represented as a dictionary. For example for the banking function, you can specify: {"length": 11, "primary": True}.

Create data from the list of locales. These are specified as strings representing the language and country from Faker. For example [, ].

If you want to anonymize your data in a reversible way, use the instead.

full address
basic bank account number
full credit card number
Latitude/longitude coordinates
phone number
Faker library's docs
PseudoAnonymizedFaker
BaseProvider
"address"
"bank"
lexify method
"street_address"
"swift"
"swift"
"en_US"
"fr_CA"
Python Faker library