LogoLogo
GitHubSlackDataCebo
  • RDT: Reversible Data Transforms
  • Getting Started
    • Installation
    • Quickstart
  • Usage
    • Basic Concepts
    • HyperTransformer
      • Preparation
      • Configuration
      • Transformation
  • Transformers Glossary
    • Numerical
      • ClusterBasedNormalizer
      • FloatFormatter
      • GaussianNormalizer
      • LogScaler
      • LogitScaler
      • * OutlierEncoder
      • ❖ DPECDFNormalizer
      • ❖ DPLaplaceNoiser
      • ❖ ECDFNormalizer
      • ❖ XGaussianNormalizer
    • Categorical
      • LabelEncoder
      • OrderedLabelEncoder
      • FrequencyEncoder
      • OneHotEncoder
      • OrderedUniformEncoder
      • UniformEncoder
      • BinaryEncoder
      • ❖ DPDiscreteECDFNormalizer
      • ❖ DPResponseRandomizer
      • ❖ DPWeightedResponseRandomizer
    • Datetime
      • OptimizedTimestampEncoder
      • UnixTimestampEncoder
      • ❖ DPTimestampLaplaceNoiser
    • ID
      • AnonymizedFaker
      • IndexGenerator
      • RegexGenerator
      • Treat IDs as categorical labels
    • Generic PII Anonymization
      • AnonymizedFaker
      • PseudoAnonymizedFaker
    • * Deep Data Understanding
      • * Address
        • * RandomLocationGenerator
        • * RegionalAnonymizer
      • * Email
        • * DomainBasedAnonymizer
        • * DomainBasedMapper
        • * DomainExtractor
      • * GPS Coordinates
        • * RandomLocationGenerator
        • * GPSNoiser
        • * MetroAreaAnonymizer
      • * Phone Number
        • * AnonymizedGeoExtractor
        • * NewNumberMapper
        • * GeoExtractor
  • Resources
    • Use Cases
      • Contextual Anonymization
      • Differential Privacy
      • Statistical Preprocessing
    • For Businesses
    • For Developers
Powered by GitBook
On this page
  • Parameters
  • Examples
  • FAQs
  1. Transformers Glossary
  2. ID

RegexGenerator

PreviousIndexGeneratorNextTreat IDs as categorical labels

Last updated 15 days ago

Compatibility: id data

The RegexGenerator is used to create structured text. When transforming the data, it simply removes the column. When reversing the transform, it recreates the structured text in the column through a regex string.

from rdt.transformers.text import RegexGenerator

transformer = RegexGenerator()

You can specify the exact regex string to use for more realistic data.

Parameters

(default) '[A-Za-z]{5}'

Generate 5-character strings such as 'ABCDE'.

<string>

Use the specified regex string to generate new values.

cardinality_rule: How many unique values to create in the fake data

(default) None

Do not impose any rules. Any number of Regex values can be generated.

'unique'

The generated data should not contain any repeating values. Note: This option may limit the amount of data that you can create using the Regex

'match'

Learn the number of unique values from the fit data and ensure that the generated data contains the same number. These may be repeated.

'scale'

Learn the number of unique values from the fit data and scale it proportionally when generating data. For example, if there are 25 unique values for every 100 rows of data, the transformer will create 50 unique values when generating 200 rows.

(deprecated) enforce_uniqueness: Use the cardinality_rule parameter instead.

generation_order: Which order to use when generating the regexes (during the reverse transform)

(default) 'alphanumeric'

Generate the data sequentially, or in alphanumeric order. For eg. 'aaa', 'aab', 'aac', etc.

'scrambled'

Generate the data sequentially but then scramble it before returning the results. For large batches of data, this is an effective way to achieve the notion of randomness.

* 'random'

Generate data completely randomly. This method works even for small batches of data.

Examples

from transformers.text import RegexGenerator

# generate values that follow the format 'ID_' followed by a 3-digit number
rg = RegexGenerator(
    regex_format='ID_\d{3}',
    enforce_uniqueness=True
)

FAQs

Are all regexes supported?

The RegexGenerator does not currently support regexes with sub-patterns, which are frequently used to indicate an "or" logic. For example, the regex string '([A-Z]{2}|\d{4})' is intended to match a 2-character string such as 'DB' or a 4-digit string such as '0391'. This regex is not suitable for the RegexGenerator.

When should I use this transformer?

The RegexGenerator is useful for id columns that do not have any mathematical meaning. This transformers follows the regex format to generate values, which may be exactly the same as the real data depending on the exact format string.

This transformer is useful for columns that represent structured IDs, such as a primary key column.

regex_format: A string that represents a . This expression will be used to generate new data.

*SDV Enterprise Feature. This feature is available to our licensed users and is not currently in our public library. For more information, visit our page to .

Tip: If you are trying to express a basic index column with countable integers (0, 1, 2, ...), we recommend using the instead of this transformer. The IndexGenerator also allows you to input a prefix and suffix to the index.

Regular Expression↗
Explore SDV
IndexGenerator