Evaluation

As a final step to your synthetic data project, you can evaluate and visualize the synthetic data against the real data.

from sdv.evaluation.single_table import run_diagnostic, evaluate_quality
from sdv.evaluation.single_table import get_column_plot

# 1. perform basic validity checks
diagnostic = run_diagnostic(real_data, synthetic_data, metadata)

# 2. measure the statistical similarity
quality_report = evaluate_quality(real_data, synthetic_data, metadata)

# 3. plot the data
fig = get_column_plot(
    real_data=real_data,
    synthetic_data=synthetic_data,
    metadata=metadata,
    column_name='amenities_fee'
)
    
fig.show()

Explore the functionality in more detail below.

Perform basic checks to ensure the synthetic data is valid.

Compare the real and synthetic data's statistical similarity.

Visualize the real and synthetic data side-by-side

Need more evaluation options?

Last updated