LogoLogo
GitHubSlackDataCebo
  • RDT: Reversible Data Transforms
  • Getting Started
    • Installation
    • Quickstart
  • Usage
    • Basic Concepts
    • HyperTransformer
      • Preparation
      • Configuration
      • Transformation
  • Transformers Glossary
    • Numerical
      • ClusterBasedNormalizer
      • FloatFormatter
      • GaussianNormalizer
      • LogScaler
      • LogitScaler
      • * OutlierEncoder
      • ❖ DPECDFNormalizer
      • ❖ DPLaplaceNoiser
      • ❖ ECDFNormalizer
      • ❖ XGaussianNormalizer
    • Categorical
      • LabelEncoder
      • OrderedLabelEncoder
      • FrequencyEncoder
      • OneHotEncoder
      • OrderedUniformEncoder
      • UniformEncoder
      • BinaryEncoder
      • ❖ DPDiscreteECDFNormalizer
      • ❖ DPResponseRandomizer
      • ❖ DPWeightedResponseRandomizer
    • Datetime
      • OptimizedTimestampEncoder
      • UnixTimestampEncoder
      • ❖ DPTimestampLaplaceNoiser
    • ID
      • AnonymizedFaker
      • IndexGenerator
      • RegexGenerator
      • Treat IDs as categorical labels
    • Generic PII Anonymization
      • AnonymizedFaker
      • PseudoAnonymizedFaker
    • * Deep Data Understanding
      • * Address
        • * RandomLocationGenerator
        • * RegionalAnonymizer
      • * Email
        • * DomainBasedAnonymizer
        • * DomainBasedMapper
        • * DomainExtractor
      • * GPS Coordinates
        • * RandomLocationGenerator
        • * GPSNoiser
        • * MetroAreaAnonymizer
      • * Phone Number
        • * AnonymizedGeoExtractor
        • * NewNumberMapper
        • * GeoExtractor
  • Resources
    • Use Cases
      • Contextual Anonymization
      • Differential Privacy
      • Statistical Preprocessing
    • For Businesses
    • For Developers
Powered by GitBook
On this page
  • Key Features
  • Browse Phone Number Transformers
  1. Transformers Glossary
  2. * Deep Data Understanding

* Phone Number

Previous* MetroAreaAnonymizerNext* AnonymizedGeoExtractor

Last updated 7 months ago

Phone number data represents cell phone or landline numbers associated with real users or businesses. Phone numbers are a type of PII data. A key consideration is that you do not want the real phone numbers in your dataset to leak. However, you may want to also preserve key characteristics of phone numbers such as their format, international country code and region/area that they come from.

Key Features

🌎 This sdtype understands the geographical context of phone numbers. It can extract international and region country codes that are embedded in your phone numbers.

🔓 This sdtype offers the novel Contextual Anonymization technique on phone numbers that are Personal Identifiable Information (PII).

Browse Phone Number Transformers

*AnonymizedGeo Extractor

Anonymize phone numbers while preserving the geographical context

*NewNumberMapper

Pseudo-anonymize phone number data using a consistent mapping that preserves the geographical context.

*GeoExtractor

Extract geographical context from phone numbers for data science use.

AnonymizedFaker

Create fake, anonymized phone numbers without considering the geographical context.

PseudoAnonymizedFaker

Create and use a reversible mapping without considering the geographical conext.

*SDV Enterprise Feature. This feature is available to our licensed users and is not currently in our public library. For more information, visit our page to Explore SDV.