LogoLogo
GitHubSlackDataCebo
  • RDT: Reversible Data Transforms
  • Getting Started
    • Installation
    • Quickstart
  • Usage
    • Basic Concepts
    • HyperTransformer
      • Preparation
      • Configuration
      • Transformation
  • Transformers Glossary
    • Numerical
      • ClusterBasedNormalizer
      • FloatFormatter
      • GaussianNormalizer
      • LogScaler
      • LogitScaler
      • * OutlierEncoder
      • ❖ DPECDFNormalizer
      • ❖ DPLaplaceNoiser
      • ❖ ECDFNormalizer
      • ❖ XGaussianNormalizer
    • Categorical
      • LabelEncoder
      • OrderedLabelEncoder
      • FrequencyEncoder
      • OneHotEncoder
      • OrderedUniformEncoder
      • UniformEncoder
      • BinaryEncoder
      • ❖ DPDiscreteECDFNormalizer
      • ❖ DPResponseRandomizer
      • ❖ DPWeightedResponseRandomizer
    • Datetime
      • OptimizedTimestampEncoder
      • UnixTimestampEncoder
      • ❖ DPTimestampLaplaceNoiser
    • ID
      • AnonymizedFaker
      • IndexGenerator
      • RegexGenerator
      • Treat IDs as categorical labels
    • Generic PII Anonymization
      • AnonymizedFaker
      • PseudoAnonymizedFaker
    • * Deep Data Understanding
      • * Address
        • * RandomLocationGenerator
        • * RegionalAnonymizer
      • * Email
        • * DomainBasedAnonymizer
        • * DomainBasedMapper
        • * DomainExtractor
      • * GPS Coordinates
        • * RandomLocationGenerator
        • * GPSNoiser
        • * MetroAreaAnonymizer
      • * Phone Number
        • * AnonymizedGeoExtractor
        • * NewNumberMapper
        • * GeoExtractor
  • Resources
    • Use Cases
      • Contextual Anonymization
      • Differential Privacy
      • Statistical Preprocessing
    • For Businesses
    • For Developers
Powered by GitBook
On this page
  • Key Features
  • Supported sdtypes
  • Browse Transformers
  1. Transformers Glossary
  2. * Deep Data Understanding

* GPS Coordinates

Previous* DomainExtractorNext* RandomLocationGenerator

Last updated 6 months ago

GPS coordinates represent precise locations around the world, for a particular building or marker in forest. GPS coordinates are defined by a latitude and longitude value.

GPS coordinates can be a type of PII data because they are precise. A key consideration is that you do not want the exact coordinates of your dataset to leak because they represent private locations. However, you may want to create realistic coordinates in similar regions.

Key Features

Supported sdtypes

GPS coordinates are defined by exactly 2 columns: 1 with sdtype latitude and another with sdtype longitude.

Currently only the decimal representation of GPS coordinates are accepted with latitude ranging from -90.0 to +90.0 and longitude ranging from -180 to +180.0.

Browse Transformers

Create random, realistic coordinates from anywhere in the world. When you do this, the combination of latitude and longitude coordinates will identify GPS locations that make sense for your data.

Private GPS coordinate pairs by adding noise within predefined regions, for example +/- 10km away from the real location.

You can also use the the technique on GPS coordinates. Preserve the broader regions from your data while anonymizing precise locations only.

🌎
🎶
🔓
Contextual Anonymization

Create realistic latitude/longitude pairs within a specific set of countries.

Anonymize GPS coordinates by adding noise within a pre-determined radius.

Anonymize GPS coordinates within the overall metro area, using postal codes.

Create anonymous coordinates without considering any context or region.

*

*

* [In Beta!]

RandomLocationGenerator
GPSNoiser
MetroAreaAnonymizer
AnonymizedFaker

*SDV Enterprise Feature. This feature is available to our licensed users and is not currently in our public library. For more information, visit our page to .

Explore SDV