LogoLogo
GitHubSlackDataCebo
  • RDT: Reversible Data Transforms
  • Getting Started
    • Installation
    • Quickstart
  • Usage
    • Basic Concepts
    • HyperTransformer
      • Preparation
      • Configuration
      • Transformation
  • Transformers Glossary
    • Numerical
      • ClusterBasedNormalizer
      • FloatFormatter
      • GaussianNormalizer
      • LogScaler
      • LogitScaler
      • * OutlierEncoder
      • ❖ DPECDFNormalizer
      • ❖ DPLaplaceNoiser
      • ❖ ECDFNormalizer
      • ❖ XGaussianNormalizer
    • Categorical
      • LabelEncoder
      • OrderedLabelEncoder
      • FrequencyEncoder
      • OneHotEncoder
      • OrderedUniformEncoder
      • UniformEncoder
      • BinaryEncoder
      • ❖ DPDiscreteECDFNormalizer
      • ❖ DPResponseRandomizer
      • ❖ DPWeightedResponseRandomizer
    • Datetime
      • OptimizedTimestampEncoder
      • UnixTimestampEncoder
      • ❖ DPTimestampLaplaceNoiser
    • ID
      • AnonymizedFaker
      • IndexGenerator
      • RegexGenerator
      • Treat IDs as categorical labels
    • Generic PII Anonymization
      • AnonymizedFaker
      • PseudoAnonymizedFaker
    • * Deep Data Understanding
      • * Address
        • * RandomLocationGenerator
        • * RegionalAnonymizer
      • * Email
        • * DomainBasedAnonymizer
        • * DomainBasedMapper
        • * DomainExtractor
      • * GPS Coordinates
        • * RandomLocationGenerator
        • * GPSNoiser
        • * MetroAreaAnonymizer
      • * Phone Number
        • * AnonymizedGeoExtractor
        • * NewNumberMapper
        • * GeoExtractor
  • Resources
    • Use Cases
      • Contextual Anonymization
      • Differential Privacy
      • Statistical Preprocessing
    • For Businesses
    • For Developers
Powered by GitBook
On this page
  • Key Features
  • Browse Email Transformers
  1. Transformers Glossary
  2. * Deep Data Understanding

* Email

Previous* RegionalAnonymizerNext* DomainBasedAnonymizer

Last updated 6 months ago

Email data represents email addresses associated with real users, businesses or other entities. Emails are a type of PII data. A key consideration is that you do not want the real emails in your dataset to leak. However, you may want to also preserve key characteristics of emails such as the top level or sub domain.

Key Features

This sdtype understands the domain of email addresses. It can extract both the full and top domain in your data.

This sdtype offers the novel technique on emails that are Personal Identifiable Information (PII).

Browse Email Transformers

🌎
🔓

Create fake, fully anonymous emails without considering the context.

Create an use a reversible mapping without considering the context.

Contextual Anonymization

*

Anonymize emails while preserving the domain.

*

Psuedo-anonymize email data using a consistent mapping that preserves the domains.

*

Extract domains from emails for data science use.

AnonymizedFaker
PseudoAnonymizedFaker
DomainBasedAnonymizer
DomainBasedMapper
DomainExtractor

*SDV Enterprise Feature. This feature is available to our licensed users and is not currently in our public library. For more information, visit our page to .

Explore SDV