ClusterBasedNormalizer
Last updated
Last updated
Compatibility: numerical
data
The ClusterBasedNormalizer
performs a statistical transformation on numerical data. It approximates the overall column as a mixture of different shapes (components). Then, it normalizes the values and clusters them into the closest component.
missing_value_replacement
: Add this argument to replace missing values during the transform phase
(default) 'random'
Replace missing values with a random value. The value is chosen uniformly at random from the min/max range.
'mean'
Replace all missing values with the average value.
'mode'
Replace all missing values with the most frequently occurring value
<number>
Replace all missing values with the specified number (0
, -1
, 0.5
, etc.)
None
Deprecated. Do not replace missing values. The transformed data will continue to have missing values.
(deprecated) model_missing_values
: Use the missing_value_generation
parameter instead.
missing_value_generation
: Add this argument to determine how to recreate missing values during the reverse transform phase
(default) 'random'
Randomly assign missing values in roughly the same proportion as the original data.
'from_column'
Create a new column to store whether the value should be missing. Use it to recreate missing values. Note: Adding extra columns uses more memory and increases the RDT processing time.
None
Do not recreate missing values.
max_clusters
: The maximum number of components to create when estimating the shape of the overall column.
(default) 10
Cap the number of clusters to 10
<number>
Cap the number of clusters to the specified value (eg. 5
, 20
, etc.). This must be a whole number (integer).
weight_threshold
: The minimum weight that is needed to possibly form a new component. Note that the total number of components is still capped by the max_clusters
argument above.
(default) 0.005
Create a new component when the weight is 0.005
or above.
<number>
Create a new component when the weight is at or above <number>
(eg. 0.001
, 0.01
, etc.)
enforce_min_max_values
: Add this argument to allow the transformer to learn the min and max allowed values from the data.
(default) False
Do not learn any min or max values from the dataset. When reverse transforming the data, the values may be above or below what was originally present.
True
Learn the min and max values from the input data. When reverse transforming the data, any out-of-bounds values will be clipped to the min or max value.
learn_rounding_scheme
: Add this argument to allow the transformer to learn about rounded values in your dataset.
(default) False
Do not learn or enforce any rounding scheme. When reverse transforming the data, there may be many decimal places present.
True
Learn the rounding rules from the input data. When reverse transforming the data, round the number of digits to match the original.